- locally homogeneous complex manifold
- локально однородное комплексное многообразие
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Complex projective space — The Riemann sphere, the one dimensional complex projective space, i.e. the complex projective line. In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a … Wikipedia
Generalized complex structure — In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures… … Wikipedia
Kähler manifold — In mathematics, a Kähler manifold is a manifold with unitary structure (a U ( n ) structure) satisfying an integrability condition.In particular, it is a complex manifold, a Riemannian manifold, and a symplectic manifold, with these three… … Wikipedia
Hermitian symmetric space — In mathematics, a Hermitian symmetric space is a Kähler manifold M which, as a Riemannian manifold, is a Riemannian symmetric space. Equivalently, M is a Riemannian symmetric space with a parallel complex structure with respect to which the… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… … Wikipedia
Blowing up — This article is about the mathematical concept of blowing up. For information about the physical/chemical process, see Explosion. For other uses of Blow up , see Blow up (disambiguation). Blowup of the affine plane. In mathematics, blowing up or… … Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia
Projective space — In mathematics a projective space is a set of elements constructed from a vector space such that a distinct element of the projective space consists of all non zero vectors which are equal up to a multiplication by a non zero scalar. A formal… … Wikipedia
Connection form — In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan … Wikipedia
Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… … Wikipedia